Herz and Herz type Hardy spaces estimates of multilinear integral operators for the extreme cases
نویسندگان
چکیده
منابع مشابه
Endpoint boundedness for multilinear integral operators of some sublinear operators on Herz and Herz type Hardy spaces
The purpose of this paper is to study the endpoint boundedness properties of some multilinear operators related to certain integral operators on Herz and Herz type Hardy Spaces. The operators include Littlewood-Paley operator and Marcinkiewicz operator.
متن کاملWeighted Multilinear Hardy Operators on Herz Type Spaces
This paper focuses on the bounds of weighted multilinear Hardy operators on the product Herz spaces and the product Morrey-Herz spaces, respectively. We present a sufficient condition on the weight function that guarantees weighted multilinear Hardy operators to be bounded on the product Herz spaces. And the condition is necessary under certain assumptions. Finally, we extend the obtained resul...
متن کاملContinuity for Multilinear Integral Operators on Some Hardy and Herz Type Spaces
The continuity for some multilinear operators generated by certain integral operators and Lipschitz functions on some Hardy and Herz-type spaces are obtained. The operators include Littlewood-Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.
متن کاملBilinear Operators on Herz-type Hardy Spaces
The authors prove that bilinear operators given by finite sums of products of Calderón-Zygmund operators on Rn are bounded from HK̇11 q1 × HK̇ α2,p2 q2 into HK̇ q if and only if they have vanishing moments up to a certain order dictated by the target space. Here HK̇ q are homogeneous Herz-type Hardy spaces with 1/p = 1/p1 +1/p2, 0 < pi ≤ ∞, 1/q = 1/q1 +1/q2, 1 < q1, q2 < ∞, 1 ≤ q < ∞, α = α1 + α2 a...
متن کاملBoundedness for Multilinear Littlewood-Paley Operators on Hardy and Herz-Hardy Spaces
Let T be a Calderon-Zygmund operator, a classical result of Coifman, Rochberg and Weiss (see [7]) states that the commutator [b, T ] = T (bf)−bTf (where b ∈ BMO(Rn)) is bounded on Lp(Rn) for 1 < p < ∞; Chanillo (see [2]) proves a similar result when T is replaced by the fractional integral operator. However, it was observed that [b, T ] is not bounded, in general, from Hp(Rn) to Lp(Rn) for p ≤ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 2006
ISSN: 2156-2261
DOI: 10.1215/kjm/1250281793